viernes, 25 de noviembre de 2011

CIRCUITOS RC

1. Introduccion

El presente trabajo es una investigación sobre el circuito RC, un circuito que cuenta con infinidad de aplicaciones, para ello se establece en primer lugar el desarrollo matemático del mismo , acompañado de un argumento teórico y seguido de ejemplos para apoyar las ideas planteadas en este trabajo.
El simple acto de cargar o descargar un capacitor, se puede encontrar una situación en que las corrientes, voltajes y potencias si cambian con el tiempo, los capacitores tienen muchas aplicaciones que utilizan su capacidad de almacenar carga y energía; por eso, entender lo que sucede cuando se cargan o se descargan es de gran importancia practica.
Muchos circuitos eléctricos contienen resistores y capacitores. La carga/ descarga de un capacitor tiene muchas aplicaciones.
Por ejemplo algunos automóviles vienen equipados con un elemento mediante el cual los limpiadores del parabrisas se utilizan de manera intermitente durante una llovizna ligera. En este modo de operación los limpiadores permanecen apagados durante un rato y luego se encienden brevemente.
La duración del ciclo encendido/apagado es determinada por la constante de tiempo de una combinación resistor-capacitor.

2. Circuitos RC
La figura ilustra un ejemplo de un circuito resistor-capacitor, o circuito RC. En la parte a del dibujo un interruptor completa el circuito en el punto A, de modo que la batería puede cargar las placas del capacitor. Cuando el interruptor esta cerrado, el capacitor no se carga de inmediato . En vez de lo anterior , la carga llega gradualmente a su valor de equilibrio de q= CVo, en donde Vo es la tensión de la batería.

                



3. Carga de un capacitor
Si cargamos al capacitor de la figura siguiente al poner el interruptor Sen la posición a. ¡ Que corriente se crea en el circuito cerrado resultante?, aplicando el principio de conservación de energía tenemos:

                      



En el tiempo dt una carga dq (=i dt) pasa a través de cualquier sección transversal del circuito. El trabajo ( = Є dq) efectuado por la fem debe ser igual a la energнa interna ( i2 Rdt) producida en el resistor durante el tiempo dt, mas el incremento dU en la cantidad de energía U (=q2/2C) que esta almacenada en el capacitor. La conservación de la energía da:
Є dq = i2 Rdt + q2/2C
Є dq = i2 Rdt + q/c dq
Al dividir entre dt se tiene:
Є dq / dt = i2 Rdt + q/c dq/dt
Puesto que q es la carga en la placa superior, la i positiva significa dq/dt positiva. Con i = dq/dt, esta ecuación se convierte en
:
Є = i Rdt + q/c
La ecuación se deduce tambien del teorema del circuito cerrado, comodebe ser puesto que el teorema del circuito cerrado se obtuvo a partir del principio de conservación de energía . Comenzando desde el punto xy rodeando al circuito en el sentido de las manecillas del reloj, experimenta un aumento en potencial, al pasar por la fuentge fem y una disminución al pasar por el resistor y el capacitor , o sea :
Є -i R - q/c = 0
La cual es idéntica a la ecuación Є = i Rdt + q/c sustituimos primero por i por dq/dt, lo cual da:
Є = R dq / dt + q/c
Podemos reescribir esta ecuación así:
dq / q - Є C = - dt / RC
Si se integra este resultado para el caso en que q = 0 en t= 0, obtenemos: (despejando q),
q= C Є ( 1 – e-t/RC)
Se puede comprobar que esta función q (t) es realmente una solución de la ecuación
Є = R dq / dt + q/c , sustituyendol en dicha ecuaciуn y viendo si reobtiene una identidad. Al derivar la ecuación q= C Є ( 1 – e-t/RC) con respecto al tiempo da:
i = dq = Є e-t/RC
dt R
En las ecuaciones q= C Є ( 1 – e-t/RC) y i = dq = Є e-t/RC la cantidad RC tiene
dt R
las dimensiones de tiempo porque el exponente debe ser adimensional y se llama constantecapacitiva de tiempo τ C del circuito
τ C = RC
Es el tiempio en que ha aumentado la carga en el capacitor en un factor 1- e-1 (~63%) de su valor final C Є , Para demostrar esto ponemos t = τ C = RC en la ecuación q= C Є ( 1 – e-t/RC) para obtener:
q= C Є ( 1 – e-1) = 0.63 C Є

Grafica para el circuito

                            

Corriente i y carga del capacitor q. La corriente inicial es Io y la carga inicial en el capacitor es cero. La corriente se aproxima asintóticamente a cero y la carga del capacitor tiende asintóticamente a su valor final Qf.
Grafica para los valores Є= 10v, R= 2000 Ώ y C= 1 μ F

                 

Esta figura en la parte a muestra que si un circuito se incluye una resistencia junto con un capacitor que esta siendo cargado, el aumento de carga en el capacitor hacia su valor límite se retrasa durante su tiempo caracterizado por la constante de tiempo RC. Si un resistor presente (RC=0), la carga llegaría inmediatamente hacia su valor limite.
Tambien en la parte a como se indica por la diferencia de potencial Vc, la carga aumente con el tiempo durante el proceso de carga y Vc tienede la valor de la fem Є.
El tiempo se mide en el momento en que el interruptores conecta en a para t= 0.
En la parte b de la figura La diferencia de potencial en el resistor disminuye con el tiempo, tendiendo a 0 en tiempos posteriores poruqe la corriente cae a cero una vez que el capacitor esta totalmente cargado. Las curvas esta dibujadas para el caso Є=
10v, R= 2000 Ώ y C= 1 μ F. Los triangulos negros representan las constantes de tiempos sucesivas.

Aqui un pequeño ejemplo de como resolver un circuito RC: video

Aqui les dejo el link paradescargar el programa: click

No hay comentarios:

Publicar un comentario